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1. Introduction 

Nonsampling errors in survey data have been 
the subject of considerable interest and research, 
as the extensive bibliography in Cochran [1] indi- 
cates. Errors of this sort may be classed as non- 
response errors, where for one reason or another 
observed measurements on some of the sample units 
are not available, and. what are often called "mea- 
surement" errors; this paper is concerned with 
these latter errors. 

Treatments of "measurement" errors tend to 
take one of two approaches: a model is postulated 
for their probability structure and the conse- 
quences with regard to the distributions of var- 
ious statistics are worked out; or, starting with 
reinterview data, various statistics are devised 
to indicate the effects of the "measurement" er- 
rors, with little explicit specification of a pro- 
bability structure for the errors. The research 
discussed is an attempt to tie these approaches 
together by developing a general model for res- 
ponse and measurement errors, and showing how the 
elements of this model enter into the distribution 
of statistics developed through the second ap- 
proach just mentioned. 

2. The General Model 

Suppose there is a population of N dis- 
crete individuals, and that with each individual 
there is associated a vector, , of character- 
istics. Usually, for an individual, the elements 
of are regarded as being fixed; however, there 
are circumstances in which it is more appropriate 
to regard them as random variables. If the ele- 
ments of are regarded as fixed, the measure- 
ment errors have the interpretation that on re- 
peated attempts to observe the value of , 

different realized values would occur. The ele- 
ments of may be regarded appropriately as 
random when, for instance, they correspond to 
states of mind of an individual with regard to 
various political or social issues. When a 
survey is conducted at some time (or trial) t , 

and a sampled individual is approached for inter- 
view or measurement, assumes a particular 
value . The distribution of potential values 
of may be different for different individuals, 
although they will be assumed to be in the same 
family of distributions, so that the individual 
distributions will differ only in the values of 
the elements of a parameter vector, . The 

distribution (probability or density function) 
of over all trials t , for the i -th popula- 
tion member will be denoted by ) . In 
turn, may be regarded as having aidistribution 
over different individuals of the population, 
with probability or density function g(e)e) 

being a set of parameters characteristic of the 
population. The act of drawing a sample of indiv- 
iduals from the population is therefore equiva- 
lent to drawing a sample of 6's, and also equiv- 
alent to drawing a sample of distributions. 
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When a survey is conducted under conditions 
Y at trial t , the i -th member of the popula- 
tion (if in the sample) will yield a measured 
response nit when information regarding 

is elicited. If the measuring or interviewing 
process contains no errors, then = 

' 

the value of at trial t for the i -th 
individual. This is, however, only the ideal 
situation; in practice, nit may be regarded 

as a random variable with a distribution de- 
pending upon and the conditions under 

which the survey is conducted. The probability 
or density function of nit (the evoked res- 

ponse of individual i at trial t may be 
denoted by 

hY(Y; 
i 
(y)) 

where 1(y) denotes a set of parameters spec- 

ific to the i -th individual and survey condi- 
tions y . As do the B's , the 4's have a 
distribution over the population, with prob- 
ability or density function k (0,0(y)). The 

Y 
notion of a "trial" t may be generalized to 
include a set of "trials" (t1,..., tm} , in 

which case and nit are vectors of 

possibly correlated elements: 

= (it )' 

1 m 

nit nit 
1 m 

Thus, repeated surveys may readily be dealt with 
in the framework of the model. 

The distribution f(C; be thought 

of as the response error distribution for an 
individual because it describes the distribu- 
tion of potential responses (F's) the indivi- 
dual might present at an interview. The dis- 
tribution hY(n; may be regarded as 

the (conditional) measurement error distribution 
which depends upon the survey conditions, the 
individual, and the response he presents at 
the interview; it describes the distribution of 
potential measurements of the response. For 
this reason, will be called the "response ", 
and n , the "measurement ". 

As a physical example to illustrate the 
distinction between these two conceptual errors, 
suppose one wishes to measure the length of a 
metal bar on two occasions, and that the unit of 
length is taken to be the meter bar formerly 
used as a length standard as it existed at a 
given instant of time. Then, at either oc- 
casion, the metal bar of interest has,in terms 
of this length standard, a definite length. 
The objective of the measurement procedure is 
to determine what the lengths on the two oc- 



casions are. Because of environmental differ- 

ences between the two occasions of measurement, 

the "true" length of, the bar may not be the 
same on both occasions; this variation is the 

response error. On measuring the bar's length 

on either occasion, the inaccuracy of the mea- 
suring instruments may lead to an observed 

length different from the "true" length at that 
occasion; this variation is the "measurement" 
error. 

As well as the distribution of measurements 
on an individual conditional upon a particular 
response , one may envisage a distribution 

for the measurements averaged over all possible 
responses under a given set of survey conditions. 
Such a distribution is 

h(n; i(Y)) - 

hY(n; yY)) f(E; ei) 

hY(n; E, ei) 

depending upon whether is a continuous or 

discrete random variable. Intuitively, h* may 
be regarded as follows: given a particular in- 
dividual, if one could obtain a measurement n 

at various trials under the same survey condi- 
tions and the act of measuring did not affect the 
process generating the measurements, then the 

observed distribution of measurements would be 
described by h *Y . 

The distributions f, h, and h* are mar- 
ginal distributions. In reality it may happen 
that the responses or measurements of different 
individuals are correlated; this is essentially 
the point at which the two approaches to analy- 
zing non -sampling errors of the "measurement" 
type diverge. Generally speaking, population 
structure approaches assume the between- indiv- 

idual correlations to be either absent or to 

have a particular form; the sample statistic - 

oriented approach makes no assumption about the 

absence of correlations between individuals. 
The remainder of this paper is concerned 

with an application of the model to the analysis 

of 2 x 2 contingency tables. In this situation, 
an individual is in, or is assigned to, one of 

four classes according to his possession or non - 
possession of either of two attributes. For no- 

tational convenience, an individual's response 

and measurement may be regarded as 4- element vec- 
tors; the j -th element of a vector being unity 
if and only if the individual is in, or is as- 

signed to, the j -th of the four possible cells 
of the contingency table, and the remaining ele- 
ments of the vector being zero. 

3. An Example of the Population Structure Approach 

From the population structure point of view, 
the roles of the response and measurement error 
distributions are so defined as to yield, for one 

or more trials, a presumed distributidn for the 
observed cell frequencies. In application, then, 

the problem becomes that of estimating the para- 

meters appearing in the functional form of the 
presumed distribution. 

As a simple example of a population struc- 

ture model for the 2 x 2 contingency table situ- 
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ation, assume that observed classifications of 
different individuals are independent, as are the 
classifications of any individual on separate 
trials. Then 

f(E; ei) 

h(n; = n' 

h*(n; 

(0 is a matrix; all the other entities are vec- 

tors) . 
Suppose and 

0i 
are independently dis- 

tributed, and that e* E(e) and 0* E(4) ; 

then the averages of the frequency distributions 

f and h* over all individuals in the popula- 

tion are 

and 

f'(E; 0*) 

h*'(n; e,* 0*) n'O*e* 

On the average basis, h *' may be taken as 

the distribution of the various cells in the 

table, and the distribution of observed fre- 

quencies is a multinomial distribution with the 

four possible values of h *' as the parameters. 

The objective is, given a set of observed clas- 

sifications, to estimate the values of the ele- 

ments of 0* and e* . If the sample units are 

classified on two occasions, and the responses 
of the individuals are assumed not to change 

between the two trials, then the average joint 

distribution of the cells is 

* 
el O 

h *, *) n 
e2 

e* 2 
3 

O 8 
4 

The models developed by Giesbrecht [3] and 

by Koch [6] lead to distributions which are 

special cases of (1) in that additional assump- 

tions regarding the elements of $* are imposed. 

The population structure model developed in the 

example used could be generalized by altering 

the independence assumptions. 

4. An Example of the Sample- Oriented Approach 

The sample- oriented approach is by and 

large concerned with estimating the population 

proportions falling into the various categories, 

and with investigating the roles of various 

sources of error and various intercorrelations 

on the precision of the estimators of these pro- 

portions. Suppose that the elements of 

represent the true proportions of the'popula- 

tion falling into the various cells of the 
table, where e is defined by 

E {E} E E e) g(0;4.0) 
. 

In the presence of measurement errors, an un- 

biased estimate of e may not be obtainable. 

The expected value of a single observation on 

individual i of the population is 



E{ni} = E E (E n hY(n;,(Y)) - 
n 

M; e) g(e; ) 

in general, the value of the bias term is not 
known. Given a simple random sample of n units 
from the population, the usual estimator of 
is Y , the sample mean. Other sampling schemes 
could be employed as well; the computations with 
simple random sampling are probably the simplest. 
The covariance matrix of the elements of Y may 
be shown to have the following form, assuming 
the e's and ¢'s to be independently distributed 
in the population: 

N 
111-(N-1)a 

N 

- diag Wei)4]} 

N 

+ E 

n-a 1 1 

n N N(N-1) 

- 

ii, 

(2) 

where e* = E {4} , = E and the distribu- 
tion of is h* ; if the sampling is without 

replacement, a = (N- n) /(N -1) ; if the sampling is 
with replacement, a = 1 ; in both cases, the 
sampling is simple random. The quantities ap- 
pearing in (2) correspond to those defined in the 
example in the previous section. The first term 
of (2) arises from the combined effects of res- 
ponse and measurement errors; the second term re- 
flects the sampling error, and the third term ex- 
presses the degree of correlation between ob- 
served classifications of individuals -- it is 
proportional to what is usually called the "with- 
in -trial correlation between different individu- 
als," -- or at least would be if the quantities 
of interest were scalars rather than vectors. 

In a practical situation, the objective is 
often to estimate the sampling and response - 
measurement contributions. For the present case, 
it may be shown that, if N « n and the third 
term of (2) is zero (which is not, by the way, 
to say that the measurement of an individual is 
uncorrelated with that of an other individual), 
then the usual estimator of the covariance ma- 
trix of the elements of the sample mean is an 

approximately unbiased estimator of V {ÿ} . 

Further, if a repetition of the survey is con- 
ducted under conditions identical to those of 
the original survey, and if measurements on dif- 
ferent trials are assumed uncorrelated, then the 

quantity g , 

n 

g = 
.1E 

- - 
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where is the observed measurement on the 

j -th sample unit, with expectation 

N 
E{g} = E {diag[(*ei)1,..., 

i=l 

provides the basis for an unbiased estimator of 
the response - measurement component of (2), 

namely 2 . y g /2n Thus, the moments of the quan- 
tities considered in the sample- oriented ap- 
proach may be related to the distribution ap- 
pearing in the general model. 

The example discussed in this section is 

based upon Koch's [7] extension to the 2 x 2 

contingency table case of the work of Hansen, 
Hurwitz, and Pritzker [5] which, in turn, is 
based on the model of Hansen, Hurwitz, and 
Bershad [4]. Felligi [2] discusses the applica- 
tion of the Hansen, Hurwitz, and Bershad model 
to interpenetrating sample and re- interview 
surveys, considering in detail the various 
intercorrelations which might arise. 

5. Remarks 

One purpose of the proposed model is to 

provide a conceptual way of considering non- 
sampling errors of the "measurement" type which 
allows the population- structure and sample - 
oriented approaches to considering these errors 
to be related to each other, with an explicit 
indication of the respects in which the two 
approaches differ. For the 2 x 2 contingency 
table case, this relating of the two approaches 
is fairly straightforward under some simplifying 
assumptions, as the preceding discussion indi- 
cates. 

The examples presented by no means ex- 
haust the possibilities for developing the gen- 
eral model, and a number of areas of extension 
may readily be visualized, for instance: con- 
sidering the applicability of the model to a 
number of other measurement error models, in- 
cluding those discussed by Cochran and by 
Mandel [8]; extension of the general model to 

include the possibility of sampling plans more 
general than simple random sampling, or surveys 
in which only a subset of the sample is reinter - 
viewed, or to include the effect of non -response, 
etc. 
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